Synthesis of (R,S)-[2,3-¹³C₂]-1-(1'-Methyl-2'-pyrrolidinyl)propan-2-one; {(R,S)-[2',3'-¹³C₂]Hygrine}

Timothy W. Abraham*,# and Edward Leete[†]

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, U. S. A.

SUMMARY

2-Ethoxy-1-methyl-5-pyrrolidinone (1) was reacted with ethyl $[3,4-^{13}C_2]$ -acetoacetate (2) in the presence of TiCl4 to give ethyl $[3,4-^{13}C_2]$ -2-(1'-methyl-5'-oxo-2'-pyrrolidinyl)-3-oxobutanoate (3) in 85% yield. Decarboethoxylation of ethyl $[3,4-^{13}C_2]$ -2-(1'-methyl-5'-oxo-2'-pyrrolidinyl)-3-oxobutanoate (3) was accomplished using NaCl and H₂O in DMSO to give (R,S)- $[2,3-^{13}C_2]$ -1-(1'-methyl-5'-oxo-2'-pyrrolidinyl)propan-2-one (4) in 91% yield. Protection of the ketone as a ketal (ethylene glycol, H⁺), followed by reduction of the amide to the amine using LiAlH4 and subsequent deprotection of the ketal gave (R,S)- $[2,3-^{13}C_2]$ -1-(1'-methyl-2'-pyrrolidinyl)propan-2-one ((R,S)- $[2',3'-^{13}C_2]$ Hygrine) (8) in 78% yield. (61% overall yield from ethyl $[3,4-^{13}C_2]$ acetoacetate). Key Words : Biosynthesis, Tropane alkaloids, Hygrine.

INTRODUCTION

The biosynthesis of the tropane alkaloids, (-)-hyoscyamine and (-)-scopolamine have been extensively studied over the last several decades. 1-(1'-Methyl-2'-pyrrolidinyl)propan-2-one (Hygrine) has been shown to be a precursor of the tropine moiety of (-)-hyoscyamine and other tropane alkaloids.¹⁻² O'Donovan and Keogh¹ fed (R,S)-[N-methyl-1⁴C,2'-1⁴C]hygrine to Datura stramonium plants and obtained an absolute incorporation of 2.1% into (-)-hyoscyamine. McGaw and Woolley² reported that the incorporation of (2R)-[2'-1⁴C]hygrine into the tropane alkaloids in Datura innoxia was 2.5 to 10 times higher than the incorporation of (2S)-[2'-¹⁴C]hygrine.

[#] Present address : Department of Medicinal Chemistry, University of Minnesota, Minneapolis.

[†] Deceased February 1992.

CCC 0362-4803/96/050419-06 ©1996 by John Wiley & Sons, Ltd.

However, recent investigations have not only questioned the preference for the (*R*)-isomer of hygrine over the (*S*)-isomer, but have also cast doubts on the role of hygrine as a precursor of (-)-hyoscyamine and (-)-scopolamine.³⁻⁵ In 1990, Sankawa *et al.*³ reported the non-stereospecific incorporation of sodium [1,2-¹³C₂]acetate into (-)-hyoscyamine and (-)-6 β -hydroxyhyoscyamine in *Hyoscyamus albus*. This indicated that both enantiomers of hygrine and/or other intermediates were being utilized for formation of the tropane ring. Subsequently, in a similar study Hemscheidt and Spenser⁴ demonstrated the non-regiospecific incorporation of sodium [1,2-¹³C₂]acetate into 6 β -hydroxytropine in *Datura stramonium*. Also, the results from feeding sodium [1,2,3,4-¹³C₄]acetoacetate⁴ indicated that acetoacetate was being cleaved to acetate before being incorporated into 6 β -hydroxytropine. In addition to this, *N*-methyl- Δ^1 -[2-²H]pyrrolinium chloride labelled both C-1 and C-5 of 6 β -hydroxytropine equally,⁴ indicating that no chiral intermediate was involved in the formation of the tropane ring. Thus, it was suggested⁴ that both enantiomers of *N*-methylpyrrolidineacetoacetate (or of hygrine) were being incorporated into the tropane ring. Also, numerous feeding experiments using labelled hygrine⁵ did not show good incorporations into the tropane alkaloids.

RESULTS

Our interest⁵ in attempting to resolve this discrepancy led us to synthesize hygrine which was doubly labelled with ¹³C in the side chain. Initial attempts to synthesize labelled hygrine using the traditional method of reacting *N*-methyl- Δ^1 -pyrrolinium salt with sodium acetoacetate⁶ gave poor yields. The method that proved successful is based on methodology developed by Speckamp.⁷⁻¹⁰

2-Ethoxy-1-methyl-5-pyrrolidinone (1) was synthesized from N-methylsuccinimide as previously described.⁷ 2-Ethoxy-1-methyl-5-pyrrolidinone (1) was then reacted with ethyl [3,4- $^{13}C_2$]acetoacetate (2) in the presence of TiCl₄ at -78 °C to give ethyl [3,4- $^{13}C_2$]-2-(1'-Methyl-5'- oxo-2'-pyrrolidinyl)-3-oxobutanoate (3) in 85% yield.⁷⁻¹⁰ The carboethoxy group was cleaved using the Krapcho method¹¹ by heating ethyl [3,4- $^{13}C_2$]-2-(1'-Methyl-5'-oxo-2'-pyrrolidinyl)-3-oxobutanoate (3) with NaCl and H₂O in DMSO at 150 °C to give (*R*,*S*)-[2,3- $^{13}C_2$]-1-(1'-Methyl-5'-oxo-2'-pyrrolidinyl)propan-2-one (4) in 91% yield. (*R*,*S*)-[2,3- $^{13}C_2$]-1-(1'-Methyl-5'-oxo-2'-pyrrolidinyl)propan-2-one (4) was then converted to (*R*,*S*)-[2,3- $^{13}C_2$]-1-(1'-Methyl-2'-pyrrolidinyl)propan-2-one ((*R*,*S*)-[2',3'- $^{13}C_2$]Hygrine) (8) by a three step sequence¹⁰ without

Synthesis of (R,S)- $[2',3'-^{13}C_2]$ Hygrine.

purification of the intermediates. First, the ketone of (R,S)- $[2,3-^{13}C_2]$ -1-(1'-Methyl-5'-oxo-2'pyrrolidinyl)propan-2-one (4) was protected as a ketal using ethylene glycol (5) and *para*toluenesulfonic acid. This was followed by reduction of the amide (6) to the amine (7) using LiAlH₄ in Et₂O. Subsequently, deprotection of the ketal with 1 *M* H₂SO₄ gave (R,S)- $[2,3-^{13}C_2]$ -1-(1'-Methyl-2'-pyrrolidinyl)propan-2-one $((R,S)-[2',3'-^{13}C_2]$ Hygrine) (8) in 78% yield for the three steps. (61% overall yield from ethyl [3,4-^{13}C_2]acetoacetate). This synthetic scheme can also be used for the synthesis of radiolabelled (¹⁴C) hygrine.

EXPERIMENTAL

Materials & Methods :

Ethyl [3,4-1³C₂]acetoacetate (99 atom % ¹³C) was purchased from Isotec Inc. Elemental Analyses were performed by M-H-W Laboratories. Electron impact (EI) mass spectra were obtained on an AEI MS-30 direct inlet mass spectrometer. NMR spectra were obtained on Brüker NR-300 and Varian VXR-300 spectrometers. All ¹H-NMR spectra were obtained at 300 MHz and all ¹³C-NMR spectra were obtained at 75 MHz. Chemical shifts are referenced internally relative to the solvent used. Infrared spectra were obtained on a Beckman Acculab 1, Perkin Elmer 1600 series FTIR or a Mattson Sirius 100 spectrophotometer. Gas-Liquid Chromatography (GLC) was performed on a Hewlett-Packard 5890A gas chromatograph equipped with a Hewlett-Packard 3392A integrator, a flame ionization detector and a 25 m, 0.31 mm internal diameter fused silica capillary column internally coated with a 0.52 μ m layer of HP-1 (100% dimethyl-polysiloxane). A helium flow rate of 1.3 mL/min was used along with the following temperature gradient program. Initial temperature of 50 °C was held for 4 minutes, followed by a ramp of 30 °C/min to 250 °C. The final temperature was held for 19.34 minutes to give a total run time of 30 minutes. Analytical TLC was performed on Machery-Nagel Polygram Sil G/UV254 0.2 mm silica gel coated plastic plates. Column chromatography was performed using 60-200 mesh Baker silica gel. Flash chromatography was performed as described by Still et al. (J. Org. Chem. <u>43</u>: 2923-2925 (1978)) using Silica gel 60 (230-400 mesh) purchased from EM Reagents. CH₂Cl₂ and Et₂O were distilled under N₂ from CaH₂. Triethylamine was distilled from calcium hydride and stored over 3Å molecular sieves. Concentration under reduced pressure refers to solvent removal on a Büchi rotary evaporator.

Synthesis :

Ethyl $[3,4-^{13}C_2]-2-(1'-Methyl-5'-oxo-2'-pyrrolidinyl)-3-oxobutanoate (3).$

A solution of 2-ethoxy-1-methyl-5-pyrrolidinone (1) (1.668 g, 11.7 mmol) in dry CH₂Cl₂ (100 mL), under nitrogen, was cooled to -78 °C in a dry-ice/acetone bath. Titanium tetrachloride (1.3 mL, 11.8 mmol) was added slowly via syringe and the mixture stirred for 30 minutes. The solution turned bright yellow in color. Then a mixture of ethyl $[3,4-^{13}C_2]$ acetoacetate (2) (1 g, 7.7 mmol), triethylamine (1.1 mL, 7.9 mmol) and dry CH₂Cl₂ (3 mL) was added in two portions via syringe. The solution turned dark orange to red in color. The resulting mixture was stirred at -78°C for 45 minutes, then allowed to warm to ~ 0 °C and stirred in an ice-bath for an additional 4 hours. Brine (50 mL) was then added, the ice-bath removed and the reaction mixture stirred for 15 mins. The two layers were separated and the aqueous phase extracted with CH₂Cl₂ (3 x 25 mL). The combined organic extracts were dried over anhydrous Na2SO4 and concentrated under reduced pressure to give the crude product. Column chromatography on silica gel, starting with 100% CHCl₃, then using CHCl₃:MeOH:NH₄OH (99:1:0.1), and finally CHCl₃:MeOH:NH₄OH (98:2:0.1) gave the product as a colorless liquid (3) (1.502 g, 85% yield, mixture of diastereoisomers not separated). GLC-r.t. = 12.25 and 12.36 mins, ¹³C-NMR (CDCl₃, labelled); δ 201.98 (d, C-3, ¹J₃₋₄ = 42.7 Hz), 30.13 (2 overlapping d, C-4, ¹J₄₋₃ = 42.6 Hz). ¹³C-NMR (CDCl₃, unlabelled, diastereoisomers): 8 200.9/200.8 (C-3), 175.2/175.1 (C-1), 167.7/167.6 (C-5'), 62.3/60.7 (C-2), 62.0/61.9 (OCH2CH3), 58.9/58.8 (C-2'), 30.4/29.9 (C-4), 29.4/29.3 (C-4'), 28.9/28.3 (N-Me), 22.7/21.2 (C-3'), 14.0 (OCH₂<u>C</u>H₃). ¹H-NMR (CDCl₃).

diastereoisomers): δ 4.1 (m, 3H, OCH₂CH₃ and H-2'), 3.6 (two t, 1H, H-2, ²J_{1H-13C} ≈5.7 Hz), 2.6 (s, 3H, N-Me), 2.15 (m, 3H, H-4, ¹J_{1H-13C} = 132 Hz), 2.6-1.5 (m, 4H, H-3' and H-4'), 1.25 (dt, 3H, OCH₂CH₃). IR: cm⁻¹ 1734 (ester C=O), 1711 (ketone C=O), 1690 (amide C=O). MS-EI (unlabelled) m/e (relative intensity): 227 (0.07), 184 (0.01), 154 (26.5), 138 (7.7), 112 (12.6), 98 (100). Elemental analysis (unlabelled) Found: 57.86% C, 7.47% H, 6.33% N. C₁₁H₁₇NO₄ requires: 58.14% C, 7.54% H, 6.16% N.

(R,S)-[2,3-¹³C₂]-1-(1'-Methyl-5'-oxo-2'-pyrrolidinyl)propan-2-one (4).

In a flask equipped with a stir bar and a reflux condenser was placed ethyl $[3,4-1^{3}C_{2}]-2$ -(1'-methyl-5'-oxo-2'-pyrrolidinyl)-3-oxobutanoate (3) (1.502 g, 6.6 mmol), NaCl (423 mg, 7.2 mmol), deionized H₂O (0.36 mL, 20 mmol) and DMSO (50 mL). This mixture was heated at 150 °C, under N₂, for 5 hours. After cooling to room temperature, 2.5 N aqueous NaOH (25 mL) was added and the mixture extracted with CH₂Cl₂ (4 x 30 mL). The combined organic extracts were washed with deionized water (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give the crude product containing traces of DMSO. Column chromatography on silica gel eluting with a gradient from 100% CHCl3 to CHCl3:MeOH:NH4OH (90:10:0.25) gave the product as a colorless liquid (4) (0.933 g, 91% yield). GLC-r.t. = 10.76 mins. ^{13}C -NMR (CDCl₃, labelled): δ 205.9 (d, C-2, ¹J_{13C-13C} = 40.9 Hz), 30.8 (d, C-3, ¹J_{13C-13C} = 41 Hz). ¹³C-NMR (CDCl₃, unlabelled): δ 205.8 (C-2), 174.7 (C-5'), 55.6 (C-2'), 47.1 (C-1), 30.6 (C-3), 29.6 (C-4'), 27.7 (NMe), 24.8 (C-3'). ¹H-NMR (CDCl₃)¹⁰: δ 3.9 (m, 1H, H-2'), 2.9 (m, 1H, H-1), 2.7 (s, 3H, N-Me), 2.2 (dd, 3H, H-3, ${}^{1}J_{1H-13C} = 126$ Hz, ${}^{2}J_{1H-13C} = 5.9$ Hz), 2.6-2.1 (m, 4H, H-1, H-3', H-4'), 1.5 (m, 1H, H-3'). IR: cm⁻¹ 1708 (ketone C=O), 1682 (amide C=O). MS-EI (unlabelled) m/e (relative intensity): 155 (5.1) 140 (2.6), 127 (2.1), 112 (6.9), 99 (5.7), 98 (100). Elemental analysis (unlabelled) Found: 61.93% C, 8.33% H, 8.88% N. C₈H₁₃NO₂ requires: 61.91% C, 8.44% H, 9.03% N.

(R,S)-[2,3-¹³C₂]-1-(1'-Methyl-2'-pyrrolidinyl)propan-2-one; {(R,S)-[2',3'-¹³C₂]Hygrine} (8).

A mixture of (R,S)- $[2,3-^{13}C_2]$ -1-(1'-methyl-5'-oxo-2'-pyrrolidinyl)propan-2-one (4) (0.933 g, 5.9 mmol), *para*-toluenesulfonic acid (30.2 mg, 0.18 mmol), ethylene glycol (5) (2.2 mL) and triethylorthoformate (4.4 mL) was refluxed, under N₂, for 1 hour. The solution was cooled to R. T., 2 N NaOH (50 mL) added and the mixture extracted with CH₂Cl₂ (4 x 30 mL). The organic extracts were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The excess ethylene glycol in the product was removed by Kugelrohr distillation $(110^{\circ}C/1 \text{ mm Hg})$ to give the crude ketal, **6**.

The above ketal (6) was dissolved in dry Et_2O (50 mL), under N₂. A 1 M solution of LiAlH₄ in Et₂O (10.5 mL, 10.5 mmol) was added via syringe and the mixture refluxed for 7 hours. The reaction mixture was then cooled to room temperature and a cold solution of 1 MH2SO4 (50 mL) added and stirred for 4 hours. The Et2O was removed under reduced pressure and the remaining aqueous solution stirred for another 1 hour. It was then made basic with 25% aqueous NaOH and extracted with CH₂Cl₂ (4 x 30 mL). The combined organic extracts were washed with saturated brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give the crude product. Flash chromatography on silica gel with CHCl₃:MeOH:NH₄OH (185:15:1) as the solvent gave the pure product as a pale yellow oil (8) $(0.664 \text{ g}, 78\% \text{ yield from 4}, 61\% \text{ overall yield from ethyl } [3,4-^{13}C_2]$ acetoacetate (2)). GLC-r.t. = 8.57 mins. ¹³C-NMR (CDCl₃): δ 208.1 (d, C-2, ¹J₂₋₃ = 40.3 Hz), 61.7 (C-2'), 56.8 (C-5'), 48.5 (d, C-1, ${}^{1}J_{1-2} = 52.7$ Hz), 30.9 (d, C-3, ${}^{1}J_{3-2} = 40.3$ Hz), 22.1 (C-4'). ¹H-NMR (CDCl₃): δ 3.0 (m, 1H, H-2'), 2.7 (m, 1H, H-1), 2.6-1.9 (m, 4H, H-1, H-3', H-5'), 2.3 (s, 3H, N-Me), 2.15 $(dd, 3H, H-3, {}^{1}J_{1H-13C} = 128 \text{ Hz}, {}^{2}J_{1H-13C} = 6 \text{ Hz}), 1.7 (m, 2H, H-4'), 1.35 (m, 1H, H-3').$ MS-EI m/e (relative intensity): 143 (3.2), 98 (3.2), 85 (5.5), 84 (95.0), 82 (12.9), 70.5 (5.6), 45 (100).

REFERENCES

- 1. O'Donovan, D.G. and Keogh, M.F. J. Chem. Soc. (C) 223-226 (1969)
- 2. McGaw, B.A. and Woolley, J.G. 17: 257-259 (1978)
- 3. Sankawa, U., Noguchi, H., Hashimoto, T. and Yamada, Y. Chem. Pharm. Bull. <u>38</u>(7): 2066-2068 (1990)
- 4. Hemscheidt, T. and Spenser, I.D. J. Am. Chem. Soc. 114: 5472-5473 (1992)
- 5. a). Abraham, T. W. and Leete, E. J. Am. Chem. Soc. 117: 8100-8105, (1995) b). Abraham,
- T. W. Ph. D. thesis, University of Minnesota, March 1992.
- 6. Galinovsky, F. and Zuber, H. Monatsch. Chem. 84: 798 (1953)
- 7. Hubert, J.C., Wijnberg, J.B.P.A. and Speckamp, W.N. Tetrahedron 31: 1437-1441 (1975)
- 8. deBoer, J.J.J. and Speckamp, W.N. IUPAC Int. Symp. Chem. Nat. Prod., 11th, <u>3</u>: 129-132 (1978)
- 9. Kraus, G.A. and Neuenschwander, K. Tetrahedron Lett. 21: 3841-3844 (1980)
- 10. Shono, T., Matsumura, Y. and Tsubata, K. J. Am. Chem. Soc. 103: 1172-1176 (1981)
- 11. Krapcho, A.P. and Lovey, A.J. Tetrahedron Lett. No. 12: 957-960 (1973)